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Abstract
Performance and e�ciency requirements are driving a trend

towards specialized accelerators in both datacenters and

embedded devices. In order to cut down communication

overheads, system components are pinned to cores and

fast-path communication between them is established. These

fast paths reduce latency by avoiding indirections through

the operating system. However, we see three roadblocks that

can impede further gains: First, accelerators today need to

be assisted by a general-purpose core, because they cannot

autonomously access operating system services like �le

systems or network stacks. Second, fast-path communication

is at odds with preemptive context switching, which is still

necessary today to improve e�ciency when applications

underutilize devices. Third, these concepts should be kept

orthogonal, such that direct and unassisted communication

is possible between any combination of accelerators and

general-purpose cores. At the same time, all of them should

support switching between multiple application contexts,

which is most di�cult with accelerators that lack the

hardware features to run an operating system.

We present M3
X, a system architecture that removes these

roadblocks. M3
X retains the low overhead of fast-path com-

munication while enabling context switching for general-

purpose cores and specialized accelerators. M3
X runs acceler-

ators autonomously and achieves a speedup of 4.7 for PCIe-

attached image-processing accelerators compared to tradi-

tional assisted operation. At the same time, utilization of the

host CPU is reduced by a factor of 30.

1 Introduction
The end of Dennard scaling [18] prevents further frequency

gains and the prospect of dark silicon [21] hampers general-

purpose parallelism. Hardware and system designers thus

turn to new architectures to increase performance or reduce

power consumption. These new ideas often revolve around

specialization through custom accelerators [9, 26, 35, 37, 48,

67, 68] and streamlined communication that bypasses the

operating system to avoid overheads [10, 39, 46].

TPUs [27] are a key example of the �rst approach. By cre-

ating a �xed-function accelerator for neural network training

and inference, Google managed to increase performance

per socket 30-fold and performance per watt 80-fold over a

contemporary CPU. The second approach of preferring data

fast paths to avoid indirections through the operating system

can be observed today with technologies like single root

I/O virtualization (SR-IOV) or In�niband. System designs

like M3 [10] and DLibOS [39] have shown that fast-path

communication achieves latency reductions of 5× for a �le

system workload on M3, and 20× for memcached on DLibOS.

Furthermore, our previous work M3 demonstrates that this

idea can be generalized to provide fast-path communication

between all compute units in the system.

Encouraged by these bene�ts, we expect ongoing de-

velopment and increased deployment of these solutions.

Use-case-driven accelerators will �nd their place in data-

centers, also because of their deterministic execution

model which helps to meet tail-latency requirements.

We therefore assume that more applications will entail

complex interactions between a mix of accelerators and

general-purpose cores. Additionally, in multi-tenant cloud

environments context switching is essential, because a single

user will typically underutilize accelerators. We also envision

advantages for small embedded and edge devices. Due to

their limited hardware resources, these devices bene�t from

the power e�ciency of accelerators and require context

switching to �exibly time-share these resources.

1.1 Problem Statement
We extract three fundamental architectural challenges from

our assumptions: First, the system architecture should enable

accelerators to run autonomously. Currently, accelerators are

often treated as peripheral devices whose execution needs

to be assisted by a general-purpose CPU [57]. The TPUs

described in Google’s paper burden their controlling CPU

with 11 – 76% load just to operate the TPU [27]. Our compar-

ison to the traditional usage of accelerators in § 7.6 con�rms

this experience by showing that even a 3GHz out-of-order



x86-64 core is 86% loaded to assist three image-processing

accelerators attached via PCIe. If accelerators had direct

access to data sources and sinks, this overhead would not be

necessary. However, such connectedness requires �rst-party

interaction of accelerators with OS services like storage

and network. Specialized solutions exist, like GPUfs [58],

GPUnet [29], and PTask [52] for GPUs or BORPH [59] and

FPGAFS [31] for FPGAs. But there is no general solution that

would grant any accelerator �rst-party access to OS services

and also allow direct communication between multiple

accelerators without assistance by a general-purpose core.

Second, fast-path communication without OS interaction

is important for low-latency data and control transfer, but

con�icts with context switching. This problem applies

to communication channels involving general-purpose

cores as well as accelerators. If communication partners

are pinned and exclusively use dedicated resources, direct

communication is easy. However, with context switching,

communication needs to consider whether the intended

recipient is currently running and how to deliver a message

otherwise. A system design needs to answer, how the

equivalent of a blocking system call should work on an

accelerator that lacks the hardware features to run an

operating system. Current solutions like M3 and DLibOS

avoid this question and forgo context switching altogether.

Finally, all compute resources in the system — accelerators

as well as general-purpose cores — should be accessible via the

same communication primitives. The resulting system should

enable developers to o�oad any job to the most suitable com-

pute resource. Suchuni�cation wasexploredin previouswork,

but only for heterogeneous general-purpose cores [12, 19, 43].

1.2 Scope
We believe that accelerators should not be forced to adapt

to operating system requirements, but focus on their main

task: a fast and energy-e�cient solution to a speci�c problem.

In this paper, we take the extreme position and rethink the

system architecture to enable a �rst-class integration of

accelerators without imposing changes on them.

In contrast to conventional architectures, we do not
build upon coherent shared memory for two reasons: First,

providing global cache coherency is challenging for systems

that consists of a wide variety of compute units such as

general-purpose cores, DSPs, and �xed-function accelerators.

Second, the costs of cache coherency in terms of chip area,

power, complexity, and performance are expected to increase

with an increasing number of compute units [28, 41]. For

these reasons, it is still unclear whether and how future

systems will support cache coherency. Therefore, we keep

cache coherency optional.

Additionally, our long-term goal is to support arbitrary

accelerators as �rst-class citizens. In this paper, we begin

to address this challenge by demonstrating our approach

for accelerators that are arguably the most di�cult to

support as �rst-class citizens: �xed-function accelera-

tors [22, 26, 35, 37, 48, 65] that do not execute software and

therefore provide none of the features that are required to run

an operating-system kernel. We believe our e�orts towards

a uni�ed interface for all compute units will generalize to

more feature-rich accelerators in the future.

1.3 Contribution
We propose M3

X, a solution for the identi�ed issues using

a hardware-software co-design approach.

• We explore the design space for fast-path communication

and context switching. We explain the fundamental prob-

lems, when combining both techniques (§ 2) and discuss

solutions in terms of interaction modes (autonomous vs.

assisted) and mechanisms (hardware vs. software).

• We converge on a design for M3
X that allows fast-path

communication without involving the OS kernel and

enables accelerators to access data sources and sinks

without assistance by a general-purpose core. At the

same time, M3
X supports context switching on both

general-purpose cores and accelerators (§ 4).

• We implement these mechanisms within the M3 OS and

hardware architecture (§ 5). M3 already supports fast-path

communication within a tile-based architecture and

uni�es communication among heterogeneous instruction

sets [10]. Thus, it constitutes a suitable starting point,

which we extend with support for context switching and

autonomous accelerators.

• In the evaluation (§ 7), we demonstrate how M3
X retains

the low overhead of fast-path communication while

enabling context switching. We show the performance

and utilization bene�ts of autonomous accelerators

using an accelerator benchmark suite and an application

scenario that might occur in datacenters.

We rely on gem5 [16] as our simulation platform. Its high

accuracy and modularity enable us to experiment with new

hardware components. The implementation of M3
X

1
and our

extensions to gem5
2

are available as open source.

2 Background andMotivation
Traditional communication via UNIX pipes, sockets, or

microkernel IPC involves the kernel in every communication.

For that reason, the kernel can bu�er messages until the

recipient is ready to receive them, can schedule recipients

based on pending messages, and can easily switch to a

di�erent thread if the current thread needs to wait for I/O.

Communication that bypasses the kernel o�ers signi�cant

gains in terms of latency and throughput, as has been shown

by M3 [10] and DLibOS [39]. We call such communication

fast-path communication in this paper. Using fast-path

1https://github.com/TUD-OS/M3
2https://github.com/TUD-OS/gem5-dtu

https://github.com/TUD-OS/M3
https://github.com/TUD-OS/gem5-dtu


communication with dedicated cores for the applications

is easy, because none of the aforementioned actions are

required, which is why M3 and DLibOS chose to omit context

switching support altogether. We also believe the still

increasing core counts and the dark silicon e�ect [21, 25] will

reduce the context switching frequency and lead to dedicated

cores for applications by default. However, in the foreseeable

future, provisioning enough hardware resources to handle

all load spikes is not feasible. These load spikes therefore

require oversubscription of cores and accelerators. Thus,

fast-path communication needs to be combined with context

switching to use the system as e�ciently as possible.

Combining fast-path communication with context switch-

ing is a hard problem, though. If the kernel is not involved in

the communication, how can we determine whether the recip-

ient is running and how can we deliver the message if it is not

running? Even without relying on coherency (see § 1.2), we

could bu�er all messages in DRAM to cope with non-running

recipients. However, this would e�ectively route all communi-

cation over DRAM, which increases latency and DRAM load

and is therefore detrimental to the goals of fast-path commu-

nication. On the other hand, communicating directly between

compute units,without involving the OS,has the consequence

that a message cannot be delivered if the designated recipient

is not running. The naive solution of waking up the recipient

and retrying the fast-path communication is not su�cient.

Since these two steps are not atomic, the recipient can be

suspended in between, leading to no progress at the sender

side. Furthermore, the kernel can no longer make scheduling

or placement decisions if it cannot tell whether applications

are currently waiting for a message or are doing useful work.

Accelerators typically lack the architectural features

to run an OS kernel locally. To avoid the indirection of

all communication through a remote kernel, accelerators

require fast-path communication to interact with other

accelerators [57]. However, as described before, fast-path

communication is possible only if the recipient is running.

Thus, the combination of fast-path communication and con-

text switching is necessary to run accelerators autonomously,

without indirection through the kernel.

3 RelatedWork
There are industry solutions for accelerator integration such

as the coherent accelerator processor interface (CAPI) [6, 62]

and the heterogeneous system architecture (HSA) [4,51]. Both

allow the integration of accelerators into a cache coherent vir-

tual memory system, but in contrast to M3
X, these hardware

solutions do not consider direct access to operating system

services by accelerators. Such access is investigated by other

works for speci�c OS services and speci�c accelerators like

GPUs [15,29,34,52,58,64,69] or FPGAs [31,47,59]. In contrast,

M3
X does not target a speci�c kind of accelerator, but provides

a general construction principle for fast-path communication

of any accelerator with any OS service or application.
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Figure 1: Overview of the system architecture.

K2 [36] and Popcorn Linux [12] demonstrate how the

Linux kernel can be extended to support multiple coherence

domains and potentially heterogeneous cores. However, het-

erogeneity in these cases is represented by general-purpose

cores with di�erent instruction sets and does not include

�xed-function accelerators. Barrel�sh [14] introduced the

multikernel concept, where message passing is used to

communicate between the operating system instances on

each core. This concept is close to the design of M3
X, but it

assumes that all cores o�er the architectural features to run

an OS kernel. M3
X sets out to remove this requirement to

integrate �xed-function accelerators as well.

Arrakis [46] and OmniX [57] integrate peripherals

and accelerators using SR-IOV. Instead of requiring the

architectural features to run a kernel, these works assume

the hardware to manage multiple contexts. M3
X explores a

more lightweight design, yet with enough hardware support

to enable context switching and fast-path communication

between components. Like NIX [11] or FlexSC [60], M3
X

adopts the idea of redirecting system calls to kernel cores to

reduce the duties of non-kernel cores such as accelerators.

Horizontal system layouts [66] with di�erent services on

separate cores were explored in DLibOS [39] and M3 [10].

Both works have shown latency reductions due to the use

of fast-path communication between cores, but they do not

support context switching due to the problems explained

in the previous section. Context switching of accelerators

has been explored speci�cally for GPUs [13, 45], but without

considering fast-path communication. M3
X combines context-

switching with the bene�ts of fast-path communication.

4 Design
We start this section with an introduction to the basic system

architecture and discuss the design space for accelerator

integration. Afterwards, we describe how fast-path com-

munication is combined with context switching. Finally, we

explain how this combination is used to run accelerators

autonomously.

4.1 SystemArchitecture
In this work,we assume a tiled system architecture as depicted

in Fig. 1. The system uses an interconnect to communicate

between tiles, similar to M3 [10] and DLibOS [39] and also

similar to upcoming system architectures based on GenZ [3]

or CCIX [2]. The tiles can contain heterogeneous compute
units (CUs), ranging from general-purpose cores to DSPs



to �xed-function accelerators. These CUs can be part of

the host system (left) and can be attached as an expansion

card (right). The host system has a shared DRAM. We use

the term activity to unify the active entities on these CUs.

On general-purpose cores, an activity is typically a thread,

whereas on accelerators it is the logic operating on a context.

4.2 Accelerator Integration
Adding accelerators into a system design poses the question

of how to balance responsibilities between hardware and

software. First, there are di�erent ways to support arbitrary

data sources and sinks for accelerators. Access to OS services

like �le systems or network stacks can be performed by

software, which is the typical approach today. This approach

requires a general-purpose core to assist the accelerator by

continuously moving data back and forth. However, if the

protocol to access OS services and data is su�ciently simple,

it can be implemented in hardware. Such a hardware-friendly

protocol allows accelerators to autonomously access arbitrary

sources and sinks and removes software from the critical

path. We present our protocol in § 4.8.

Second, if a system wants to supportmultiple activities with

di�erent priorities on a single accelerator, a low-latency con-

text switch to the prioritized activity is needed. However, ac-

celerators are typically invoked by software and are not inter-

ruptible until the computation is complete. One way to lower

the latency is to reduce the amount of data per invocation.

Consequently, the compute time per invocation is reduced,but

software needs to continuously invoke the accelerator, which

causes more CPU utilization and power consumption. Alter-

natively, the �ne-grained invocation can be done in hardware

by adding a simple state machine with preemption points

next to the accelerator logic, as described in § 4.9.

Finally, to improve the utilization of accelerators, support

for multiple contexts is necessary. One solution is to require

the accelerator to provide a su�cient number of contexts and

multiplex the hardware accordingly (e.g., based on SR-IOV).

Alternatively, a combination of hardware and software can

be used, which requires only a single context in hardware.

To keep the hardware simple, we chose the latter approach:

We perform the potentially complex scheduling decisions

in software and add a simple state machine to the hardware,

which saves and restores contexts.

4.3 Activity-aware Communication
To increase the �exibility and applicability of our system de-

sign,we chose not to rely on shared memory. Hence,messages

cannot be delivered if the receiving activity is suspended (e.g.,

by preemption). There are two basic solutions to this problem:

1. Eagerly invalidate all incoming communication channels

to an activity before suspending it or

2. keep the communication channels alive, but lazily detect

communication attempts with suspended activities.

The eager approach does not require hardware support, but

leads to more context switching overhead that grows linearly

with the number of communication channels. In contrast, the

lazy approach requires hardware support, but communication

channels do not need to be invalidated on context switches.

We chose the lazy approach, because our system supports

many incoming communication channels (at most (n−1)∗m
percompute unitwithnCUs andm communication endpoints

per CU). Furthermore, many communication channels are

typically not used while an activity is suspended. To this end,

we inform the hardware of the running activity and of the

intended recipient activity when communicating (see § 5.5

for details). The hardware compares both and reports an error

upon communication attempts with suspended activities.

4.4 Message Forwarding
Independent of eager invalidation or lazy detection, the hard-

ware reports an error to the sender if the intended recipient is

not running. Unfortunately, the naive solution of scheduling

the recipient and retrying the fast-path communication in-

troduces the following race condition: Since the kernel is not

involved in this communication, it does not know when the

communication has been completed successfully. If the kernel

suspends the recipient before the communication has been

�nished, the sender does not make progress. The problem is

that context switching and communication are decoupled, be-

cause the kernel performs the context switching, but activities

bypass the kernel when performing fast-path communication.

For example, if multiple senders try to communicate with

multiple recipients scheduled on the same CU, the kernel

could decide to schedule the next recipient before the

communication with the current recipient has been �nished.

We resolve this race condition by falling back to the

traditional kernel-based communication model, if a com-

munication failed due to a suspended activity. The kernel

performs both the context switching and the communication:

If activity A receives an error after trying to send a message

to activity B, it asks the kernel to forward this message

to B. When receiving the forward request, the kernel will

�rst schedule B and afterwards send the message to B. To

guarantee progress, the kernel does not suspend B until the

message has been successfully delivered.

4.5 Computing vs. Idling
Another consequence of fast-path communication is that

the kernel does not know whether an activity is currently

computing or idling, because it waits for a message. We solve

this problem by sending an idle noti�cation to the kernel,

similarly to scheduleractivations [8]. Alternatively, the kernel

could poll all CUs periodically to check whether the current

activity is performing useful work, but we opted against this

solution in favor of a less loaded and more scalable kernel.

We employ two optimizations. First, to prevent overeager

context switches, we delay the sending of idle noti�cations
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Figure 2: Stream-processing accelerators (left) and request-

processing accelerators (right).

by a kernel-de�ned value called idle delay. The idle delay

is stored in the address space of the current activity and

updated by the kernel. Second, an activity does not need to

send idle noti�cations at all if there is no ready activity that

can run on its CU. In this case the idle delay is set to zero.

Note that we cannot force activities to report idling.

However, threads on traditional systems can also decide to

poll instead of using blocking system calls. On both systems,

CPU-hogging activities can be penalized (e.g., priority

degradation) and forcefully preempted.

4.6 Gang Scheduling
The concepts described so far allow to suspend activities,

resume activities based on communication attempts, and

to use the system’s resources e�ciently by switching to a

di�erent activity in case the current activity idles. However, if

a set of heavily communicating activities contend with other

activities for the same CUs, a systematic scheduling approach

is required to maintain good performance. For example,

consider a chain of accelerator activities that perform stream

processing and therefore exchange messages and data at a

high rate. If multiple such chains are contending for the same

accelerators, the kernel needs to context switch these activ-

ities. However, uncoordinated context switching among the

activities of all chains leads to many failed communication at-

tempts when activities of di�erent chains run simultaneously.

We solve this problem by introducing a simple form of gang

scheduling [44]. Applications de�ne the gang of a new activity

at its creation time and the kernel pins all activities in a gang

on di�erent CUs and schedules them at the same time. We use

this to run all activities of a single chain simultaneously. As

the evaluation shows,multiple sets ofheavily-communicating

activities can therefore e�ciently share the same CUs.

4.7 Accelerator Types
In this work, we consider two types of accelerators, depicted

in Fig. 2: stream-processing accelerators that process a stream

of data in blocks and compute on each block exactly once

(e.g., AES encryption) and request-processing accelerators
that receive the entire data for the computation with a

single request and can access all data during the entire

computation (e.g., graph processing or garbage collection).

The stream-processing accelerators use DMA-based memory

access to load a block of data from a source (e.g., a �le or

network socket), perform the computation on the block, and

store the result to a sink. The request-processing accelerators

use cache-based memory access to the request data to support

large requests while maintaining �ne-grained data access. For

both accelerators,we add an accelerator supportmodule (ASM),

implemented as a �nite-state machine, to the accelerator logic.

The accelerator logic performs the computation, whereas the

ASM interacts with other CUs and invokes the accelerator

logic. We implemented the ASM as a piece of hardware in the

current gem5-based prototype to demonstrate its simplicity.

Running these two types of accelerators autonomously

requires access to OS services such as �le systems, network

stacks, and pipes to load and store data. Furthermore,

accelerators need to be interruptible without requiring

assistance by a general-purpose core. We describe our

solution for both problems in the following sections.

4.8 Access to OS Services

Enabling accelerators to access �les or network sockets

requires a simple and uni�ed protocol to obtain access

to these resources. To this end, we designed a simple

protocol for all �le-like objects, in the same spirit as UNIX’s

everything-is-a-�le principle. In contrast to UNIX, we

implement OS services as microkernel-style servers and

support both applications and accelerators as clients.

The �le protocol uses a fast-path messaging channel

between client and server. The server is expected to make the

data available in memory and to provide the client with access

to the data via a fast-path data channel. This channel enables

accelerators to access large amounts of data autonomously,

preventing frequent client-server interactions.

The protocol comprises two main requests: next_in and

next_out. The former requests access to the next piece

of data to read, whereas the latter requests access to the

memory to which the next piece of data should be written.

For example, a �le-system server will provide the client with

access to a fragmented �le piece by piece, as described in

more detail in § 5.7. After providing the client access to the

data, the server returns the o�set and size of the piece. Upon

receiving this reply, the client can access the data via the

fast-path data channel without involving the server again.

After �nishing the current piece, the client issues another

next_in or next_out request to the server. A piece of length

zero from the server denotes end-of-�le.

As the client accesses the data on its own, the server does

not know how many bytes the client has actually read or

written. Therefore, input and output requests need to be

committed. Each next_in and next_out request implicitly

commits the complete previous piece of input or output data,

respectively. Additionally, the commit(nbytes) request can

be used to explicitly commit the �rst nbytes of the previous

input or output request. The commit request is used, for

example, if a client wants to stop writing to a �le, in which

case it might have written less than it got access to.



Finally, some servers support the seek request to change

the �le position. As described in more detail in § 5.8,

the �le protocol is implemented within the ASM of the

stream-processing accelerators to load input data from

arbitrary �le-like sources and store the result to arbitrary

�le-like sinks. Note that request-processing accelerators can

access OS services via the �le protocol as well, but this has

not been implemented. To test the generality of the protocol,

we added a POSIX-like API on top and implemented a �le

system server, pipe server, and virtual terminal.

4.9 Interruptible Accelerators
As discussed in § 4.2, accelerators should be interruptible

with low latency, requiring �ne-grained invocations. At the

same time, accelerators should run autonomously, asking

for coarse-grained interactions with software. We achieve

both by using the ASM as an indirection. Software performs

the coarse-grained invocation of the hardware-implemented

ASM, which in turn invokes the accelerator logic in a

�ne-grained fashion and is interruptible between these invo-

cations. We implemented this scheme for request-processing

accelerators, because the considered stream-processing

accelerators already perform their computation block-wise

with relatively small block sizes.

5 Implementation
Our prototype implementation is based on the hardware and

software part of M3 [10]. The hardware platform of M3 exists

by now as custom silicon in the Tomahawk 4 chip [24]. To

extend the hardware part, we build on top of the already exist-

ing gem5 prototype. Both the gem5 prototype platform and

the OS are open source and have been extended in this work

to support context switching and autonomous accelerators.

5.1 Background onM3

The key idea of M3 is to introduce a new hardware component

next to each CU, which serves as an abstraction for the het-

erogeneity of the CUs and supports fast-path communication

between CUs. This hardware component is called data trans-

fer unit (DTU) and is accessible over memory-mapped I/O

(MMIO). Each CU is integrated with its DTU as a tile into the

network-on-chip. The DTU provides a set of communication

endpoints that can be con�gured as send, receive, or memory

endpoints. Sendandreceive endpoints allow to establisha fast-

path messaging channel,whereas memory endpoints are used

for fast-path data channels. Data channels provide DMA-like

access to a contiguous and byte-granular memory region.

The M3 kernel runs on a dedicated kernel tile, because

not all tiles can be expected to run an OS kernel. The M3

kernel is di�erent from traditional kernels, because it does

not run user applications on the kernel tile. Instead, the

kernel runs applications on other tiles, called user tiles,
and waits for system calls in the form of messages, sent

by applications via the DTU. Since only the kernel tile can

con�gure DTU endpoints, applications are isolated from each

other by default. The main responsibility of the kernel is to

establish communication channels between applications by

con�guring DTU endpoints remotely. After a communication

channel has been established, applications communicate

directly with each other, bypassing the kernel.

On M3, the same activity abstraction
3

is used for all types

of tiles, because the kernel is only concerned with their

DTU state. The M3 kernel uses capabilities to manage the

permissions in the system. Each activity has its own address

space and capability space and system calls allow to exchange

capabilities between activities. Since M3 does not support

context switching, an activity is assigned to a free tile on

creation and occupies this tile until its termination.

Outside of the kernel, M3 provides servers to host the

actual functionality of the OS. M3 o�ers an in-memory

�lesystem, called m3fs, that organizes the data similarly to

classical UNIX �lesystems. The important di�erence is that

m3fs grants applications direct access to �le data via the DTU.

Additionally, M3 o�ers a pipe server to connect activities via

a unidirectional, �rst-in-�rst-out communication channel.

5.2 Virtual Memory Support
So far, M3 supports only simple general-purpose cores

without virtual memory. Instead, cores have untranslated

access to their dedicated scratchpad memory. To support

more complex applications and be able to switch between

them without �rst saving their entire memory state to DRAM,

we added virtual memory support to M3. However, to prepare

for future systems, M3
X does not take advantage of cache

coherency, but keeps it optional.

As virtual memory is also desirable for the cache-based

memory access of request-processing accelerators, we added

virtual memory support in two variants. For general-purpose

cores, we use their memory management unit (MMU) and

run a small helper on the core that receives page faults. For

accelerators, we add an MMU to the DTU, consisting of a page

table walker and translation lookaside bu�er (TLB). In both

cases, page faults are resolved by a pager in collaboration with

the M3
X kernel,whichupdates the page table entries,similar to

othermicrokernel-basedsystems [33,61]. The pager is a server

in M3
X that supports copy-on-write and demand loading. On

general-purpose cores, the helpersends a message to the pager

to resolve page faults. On accelerators, the DTU sends the

message to the pager, which is transparent to the accelerator.

5.3 Context Switching Overview
Context switches are performed remotely on the user tiles,

initiatedby the M3
X kernel. This approach is required foraccel-

erators that do not have the architectural features to run an OS

kernel,but is optional forgeneral-purpose cores withthese fea-

tures. In other words, the implementation could be extended

to perform context switches on general-purpose cores locally.

3
M3 calls tiles processing elements (PEs) and activities virtual PEs (VPEs).
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their interfaces, shown on an exemplary assembly of CUs.

A context switch involves four components, depicted in

Fig. 3: the CU, the DTU, the context switcher (CtxSw) in the

M3
X kernel, and a small component on each user tile, called

remotely controlled time multiplexer (RCTMux). RCTMux

saves and restores the CU-state (e.g., CPU registers or the

accelerator’s local memory) during a context switch. The

security-critical DTU-state (e.g., communication endpoints)

is saved and restored by the kernel. RCTMux is CU-speci�c

and either a piece of software on programmable CUs or a

piece of hardware as part of the ASM for accelerators. The

M3
X kernel maintains one context switcher for each user tile

and performs scheduling and placement decisions.

These four components have two important interfaces.

The �rst interface between the context switcher and RCTMux

(green in Fig. 3) is used by the kernel to request saves and

restores from RCTMux and by RCTMux to acknowledge their

completion. Second, the DTU-CU interface (red) is used by

the kernel to signal the CU about an imminent context switch.

Depending on the type of CU, the signal injects an interrupt

request into a core or noti�es the ASM of an accelerator.

5.4 Kernel Extensions
We incorporated the context switcher module into the M3

kernel to perform context switches on user tiles. First, the

context switcher asks RCTMux to save the CU state. The

context switcher then saves the DTU state of the current

activity, restores the DTU state of the new activity, and asks

RCTMux to restore said activity’s CU state. Each of these

steps is executed individually to be able to handle other

requests (e.g., system calls) in the meantime.

Furthermore, we introduced a system call to forward

messages upon communication attempts with suspended

activities. The kernel bu�ers the message to forward, sched-

ules the recipient, and delivers the message to the recipient

as soon as it is running. Finally, we added a system call for

idle noti�cations, upon which the kernel switches to the next

ready activity or work-steals an activity from another tile in

case no activity was ready. For application activities, the ker-

nel sets the idle delay to 20,000 cycles
4
. For server activities,

the kernel uses an idle delay of one cycle, because servers are

4
This idle delay turned out to be a good trade-o� between context switch-

ing too often and overly long idle periods.

typically only activated on demand. Hence, switching to an

application is more bene�cial for the system’s performance.

To facilitate fast-path communication, the kernel migrates

activities in two situations. First, if two activities are scheduled

on the same CU and attempt to communicate, the kernel tries

to migrate the currently suspended activity to another CU. If

migration is not possible (e.g., no other compatible CU is avail-

able), the kernel instead performs a context switch from the

activity that attempted the communication to the suspended

activity. Second, if an activity is idling (see § 4.5), the kernel

tries to work-steal a ready activity from a compatible CU.

5.5 DTU Extensions
To detect communication attempts with suspended activities,

we equipped the DTU with the ID of the current activity and

added the destination activity ID to the message header. If

the destination activity ID at the recipient’s DTU does not

match the current activity ID, the DTU reports an error to

the sender. In this case, the sender asks the kernel to forward

the message to the recipient via the forward system call.

If the kernel decides to perform a context switch on a user

tile, the DTU might currently be busy with a communication.

As explained in § 5.1, the DTU supports messaging channels

and data channels. Messages need to be delivered exactly

once, whereas data accesses can be repeated. To keep the DTU

simple, we decided against a complicated protocol to abort

potentially ongoing communication. Instead, the DTU has

an abort command, which consists of two parts. First, further

communication attempts are rejected with an error until re-

enabledbythe kernel. Second,the DTU waits untilallmessage-

based communication is completed, whereas data accesses

are aborted with an error and need to be repeated later.

5.6 RCTMux
We implemented RCTMux both for accelerators and for

general-purpose cores. As mentioned before, on accelerators,

RCTMux receives a signal from the kernel if a context switch

is desired. The ASM checks for the signal only at convenient

points in time, because the accelerator logic is not assumed

to be interruptible. Upon the signal, it saves the ASM’s state

and the accelerator’s local memory via DTU to a previously

allocated space in DRAM,uses the DTU’s abort command,and

noti�es the kernel that the state has been saved. Analogously,

the state is restored upon a restore request from the kernel.

We also implemented RCTMux for x86-64 as a small

piece of software running in ring 0. In this case, RCTMux is

activated by an interrupt injection, saves the CPU registers,

uses the DTU’s abort command, and noti�es the kernel. Upon

a restore request from the kernel, it restores the CPU registers

and resumes a previously aborted data access, if necessary.

5.7 File Protocol Servers
M3 already features an in-memory �le system, called m3fs,

and a pipe server. However, since M3 was only evaluated
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on general-purpose cores (in some cases with instruction

extensions), the protocols to access these OS services are

not suited for accelerators. First, M3 uses a di�erent protocol

for m3fs than for the pipe server, requiring accelerators to

implement multiple protocols. Second, m3fs’s protocol is

based on the exchange of capabilities to obtain access to

the data and requires clients to manage the �le position.

In summary, the existing protocols are too complex to be

implemented in hardware. For that reason, we replaced them

with the �le protocol, as introduced in § 4.8.

On M3
X, the �le protocol is based on a messaging channel

between client and server and a data channel to access the

�le data. Since m3fs manages the �le data in extents, similar

to other modern �le systems [40, 50], the next_in request

provides the client with access to the next extent of the

�le by asking the kernel to establish a corresponding data

channel. The �le position is managed and advanced by m3fs

and can also be changed by the seek request. For appends,

the next_out request allocates new space and provides the

client with access to this space. Upon commit, m3fs truncates

this space, if necessary, and makes it visible to other clients.

The pipe server uses a single and contiguous shared

memory area in DRAM per pipe to exchange data between

clients. For that reason, the pipe server asks the kernel to

con�gure the client’s data channel only once for the complete

area and tells the clients where to read or write next. If no

data can be read or written, the pipe server delays its response

to the next_in or next_out request correspondingly.

5.8 File Protocol Clients
On the client side, we implemented the �le protocol in

software (for general-purpose cores) and in hardware (for

accelerators). The software version is part of M3
X’s standard

library and allows applications to use a POSIX-like �le API.

The library maps this API to the corresponding next_in,

next_out, commit, and seek requests.

To enable access to �le-like resources forstream-processing

accelerators, we implemented the �le protocol as part of the

accelerator support module (ASM). The stream-processing

accelerator has an input stream and an output stream, each

using one messaging channel (M) to the server and one

data channel (D) to access to data, as shown in Fig. 4. Like

many other accelerators [17, 38, 55, 56, 63], the computation

is performed on scratchpad memory (SPM), because it allows

many parallel memory accesses (indicated by the thick

arrows) and has predictable access latency.

The ASM loads data via the DTU from the input stream

into the accelerator’s SPM, activates the accelerator logic, and

writes the result to the output stream. The ASM starts in state

IN , which checks whether the input data channel has data

left to read. If so, it directly transitions to state RD to read the

next block of data into the SPM. Otherwise, it sends an input

request (next_in) to the input server to request access to new

input data and transitions to state W . State W waits until a

message arrives and transitions to RD as soon as the reply to

the input request has been received. After the next data block

has been read into the SPM, the accelerator logic is activated

and the ASM transitions to state C for the computation.

As soon as the computation has been completed, the ASM

transitions to state OU . Analogously to the input phase, OU
�rst checks whether the output data channel has space left for

the result of the computation. If so, it directly transitions to

WR and writes the data. Otherwise it �rst requests new space

from the output server (next_out). Afterwards, the ASM

transitions back to state IN , which repeats the procedure

until the reply to an input request indicates end-of-�le. In this

case, the ASM commits the written data by sending commit
to the output server, if required, and transitions to state E.

6 Discussion
We believe that our architecture provides a good foundation

for very heterogeneous systems, but we are aware that CUs

will be diverse and have di�erent requirements. This section

discusses a few examples of how our current prototype can

be extended to support other use cases.

Our context switching mechanism handles the simple

save and restore actions on user tiles and the decision

making in the M3
X kernel. While we show in the evaluation

that context switches on �xed-function accelerators have

acceptable overhead, the mechanism is probably not a

good �t for accelerators that have a large state such as

GPUs. General-purpose cores provide native mechanisms

to save/restore their state, which are used by the software

version of RCTMux. Therefore we believe that large-state

accelerators need tailored context-switching mechanisms

as already partially supported by modern GPUs.

As described in § 5.4, the M3
X kernel currently migrates

an activity to a di�erent tile if two activities on the same

tile try to communicate. This policy assumes that the

communication attempt starts a series of interactions

between these activities, which mostly holds true for our

current workloads. Clearly this is not the best solution in all

cases. For example, if the activities communicate just once,

a local communication channel with context switching can

be preferable, if supported by the compute unit.
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Figure 5: Fast-path vs. forwarded communication.

And �nally, our current prototype does not queue messages

at the recipient’s compute unit if the recipient is suspended,

but forwards the message to the recipient via the M3
X kernel.

We chose this solution to keep the hardware extensions small

and, most importantly, minimize the burden on accelerators.

If accelerators support message queues or such queues are

added externally, the number of kernel involvements can

be reduced. Thus, arguably our solution uses a queue size of

zero, which can be extended to queue a few messages locally

and only resort to the M3
X kernel if the queue is full.

7 Evaluation
Our evaluation answers the following questions:

• How does fast-path and forwarded communication

perform?

• Do the changes to the �le protocol reduce its performance?

• What is the performance impact if activities share tiles?

• What are the bene�ts of autonomous accelerators?

7.1 Evaluation Platform
We used the gem5-based prototype platform for our eval-

uation. General-purpose tiles contain a single out-of-order

x86-64 core with 32 KiB L1 instruction cache, 32 KiB L1 data

cache, and 256 KiB L2 cache. The request-processing accel-

erators use 32 KiB L1 cache, whereas the stream-processing

accelerators use 2 KiB scratchpad memory. General-purpose

cores are simulated with a 3GHz clock frequency, whereas

accelerators are clocked with 1GHz. All DTUs are con�gured

to have 16 endpoints available. We use the DDR3_1600_8x8
model of gem5 as the physical memory, clocked at 1GHz.
To keep the simulation times manageable, we connect the

tiles via a crossbar instead of a full network-on-chip, which

was su�cient, because our evaluation does not require large

numbers of tiles. Due to the still long simulation times we

used representative, but short-running benchmarks.

7.2 Fast-Path vs. Forwarding
M3

X combines fast-path communication with context switch-

ing. In a �rst step, we use micro-benchmarks to determine

the costs of forwarded communication, requiring a context

switch, compared to fast-path communication. We measure

the round-trip-time between activities on di�erent CUs. Fig. 5

shows the average time over 16 runs with warm caches. The

uppermost two rows show the time for stream-processing

accelerators (SP), �rst if the recipient is running, resulting

in fast-path communication, and second if the recipient is

suspended, resulting in forwarded communication. The next

two rows show the results for request-processing acceler-

ators (RP), followed by two rows for an x86-64 core. The

�nal row shows the time for a core-local round trip, using for-

warded communication for both the request and the response.

As the results in Fig. 5 show, fast-path communication

is more than one order of magnitude faster than forwarded

communication on our system. All forwarded communication

requires a forward system call, upon which the kernel per-

forms a context switch to the receiving activity and forwards

the message to the recipient. Most of the time is spent with the

actual context switch, because it requires multiple steps and

is carried out partially by RCTMux and partially by the kernel.

Since stream-processing accelerators use a local scratchpad

memory, the content needs to be saved and restored, leading

to additional overhead. On x86-64, the overhead is larger,

because the RCTMux is implemented in software. Finally, the

core-local round trip requires two context switches. However,

it is not twice as expensive as a single context switch, because

the kernel optimizes this case by omitting the idle noti�cation.

7.3 Application-level Benchmarks
As described in § 5.7, we simpli�ed and uni�ed the �le

protocol to be hardware-friendly. To evaluate whether these

changes impact performance, we used the system call tracing

infrastructure from M3. It allows to run an application on

Linux, trace the system calls including timing information and

replay the trace on M3. We used the following applications:

1. tar: creates a tar archive from �les with sizes between

128 and 8192 KiB and 16 MiB in total,

2. untar : unpacks the same archive,

3. shasum: computes the SHA256 hash of a 512 KiB �le,

4. sort: sorts a 256 KiB �le with 408 lines,

5. �nd: searches 24 directories with 40 �les each,

6. SQLite: creates a table and inserts/selects 32 entries, and

7. LevelDB: creates a table and inserts/selects 512 entries.

The applications tar, untar, shasum, sort, and �nd have been

taken from BusyBox 1.26.2 [1]. SQLite is an embedded and

highly reliable database engine [7]. LevelDB is a light-weight

and high-performance key-value store, created by Google [5].

We chose these applications to stress the system in di�erent

ways: tar and untar are data intensive, shasum and sort are

compute intensive, �nd performs many small �le-system

requests, and SQLite and LevelDB are mixtures of these.

We used these applications to compare the performance

between Linux 4.10, M3 with the original �le protocol, and

M3
X using the uni�ed and hardware-friendly �le protocol. In

this section,M3 and M3
X use three dedicated x86-64 tiles (with-

out accelerator tiles) for the application, m3fs, and the pager,

whereas Linux uses a single x86-64 core. However,M3 andM3
X
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Figure 6: Performance comparison between Linux (Lx), M3,

and M3
X.

do not take advantage of multiple tiles, because all cross-tile

interactions are synchronous and therefore,atno point in time

is useful work done in parallel. On M3 and M3
X, we use extents

of at most 512 KiB, requiring multiple requests to m3fs to read

and write �les. On Linux, we use tmpfs as the in-memory �le

system. All �le systems use a block size of 4 KiB. Fig. 6 shows

the average runtime of 7 runs after one warmup run, broken

down into the application time, time for data transfers, and

OS overhead. We account Linux’s time for the system calls,

which are unsupported
5
, as application time as well. Since

the standard deviation is below 1%, we omit error bars.

In our previous work, we have already shown that data-

intensive workloads like tar and untar have signi�cantly less

OS overhead on M3 than on Linux when running on simple

Xtensa cores. As Fig. 6 shows, these improvements can be seen

on x86-64 cores as well. Note however, that the di�erence is

about a factor of two on x86-64 instead of �ve as on Xtensa,

because the Xtensa cores did not have a cacheline prefetcher,

resulting in poorperformance on Linux [10]. On both architec-

tures, the DTU’s data channel can be con�gured in constant

time for any byte-granular and contiguous region of memory,

independent of its size. After the channel has been established,

applications access the data via DMA withalmostno overhead.

Therefore, M3 and M3
X outperform Linux signi�cantly.

For the remaining applications, computation dominates

the runtime, leading to smaller overall performance improve-

ments. Note that SQLite is slightly faster on M3, because the

new �le protocol in M3
X currently does not provide clients

with read-write access to data and SQLite often switches

between reading and writing of the same �le. These switches

require a commit request and a new next_in or next_out
request, causing additional overhead.

7.4 Tile Sharing
After the performance comparison using three tiles, we show

the performance impact when activities share tiles by means

of context switching. In the �rst step, we ran both OS servers

(m3fs and pager) on the same tile and in the second step, we

ran the OS servers and the application on a single tile.

Fig. 7 shows the average runtime of three runs, preceded

by one warmup run, normalized to the average runtime on

5
In these benchmarks, the system calls access,brk,chdir,chmod,chown,

dup2, fchown, fcntl, fdatasync, futex, geteuid, getpid, getrlimit,

gettimeofday, getuid, ioctl, and utimes were unsupported on M3/M3
X.

The sum of the times for the ignored system calls was at most 0.4ms.
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Figure 7: Application performance with a varying number of

tiles, relative to the runtime on M3
X with 3 tiles.

M3
X with three tiles. The standard deviation is less than 2%.

As the results show, using the same tile for both servers and a

dedicated tile for the application (two tiles in total) has almost

no performance impact. Running servers and application

on a single tile leads to a performance degradation in some

cases. For tar and untar, the runtime is increased by 17% and

12%, respectively, but M3
X is still about twice as fast as Linux.

shasum and sort show almost no performance degradation,

whereas �nd and SQLite experience a signi�cant slowdown.

The reason is, that both �nd and SQLite communicate

heavily with m3fs, leading to many context switches. The

performance of LevelDB degrades slightly, but is still better

than on Linux. We conclude that some workloads require

faster core-local context switches. We could improve M3
X by

running a kernel with context-switching support directly on

the core, in case the necessary hardware features are available.

7.5 Autonomous Request Processing
After the evaluation on general-purpose cores, we want to

demonstrate the bene�ts of autonomous accelerators. In this

section, we start with request-processing accelerators. As

described in § 4.9, software invokes the ASM, which in turn

invokes the accelerator logic. In this section, we evaluate

the impact of the invocation granularity on performance and

CPU wake-up frequency.

We simulate the accelerators using gem5-Aladdin [56],

which is a power-performance accelerator modeling

framework that can be used to explore the design space for

�xed-function accelerators. gem5-Aladdin simulates the

accelerator logic and uses the memory subsystem of gem5 to

perform memory accesses. gem5-Aladdin achieves an error

of less than 6% for the accelerator’s performance compared

to real hardware. We adapted gem5-Aladdin to be invoked

by the ASM and to notify the ASM of completions.

To use a request-processing accelerator, an application

creates an activity for the desired accelerator, creates

the memory mappings for the input and output data in

the activity’s virtual address space, and establishes the

communication channel to invoke the ASM. In this case, the

input data is stored in �les and the output data should be

written to �les as well. Therefore, these �les are mapped into

the virtual address space of the accelerator activity.

We use di�erent accelerator workloads from Mach-

Suite [49]. MachSuite has been analyzed by gem5-Aladdin
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with the result that some accelerators bene�t from DMA-

based memory access and others bene�t from cache-based

memoryaccess. Forthis evaluation,we pickedthe accelerators

that bene�t from cache-based memory access:

1. Stencil-3D: a three-dimensional stencil computation,

2. MD-KNN: a k-nearest-neighbor computation from

molecular dynamics,

3. FFT-1D: a one-dimensional fast Fourier transform, and

4. SPMV: a sparse matrix-vector multiplication.

We adjusted each accelerator to perform a single indivisible

step per invocation by the ASM. Multiple such invocations

are batched in a single invocation by the CPU. We analyze

the spectrum between assisted and autonomous operation

by varying the batch size.

Fig. 8 shows the results from three runs after one warmup

run with batch sizes of 1 to 256. Performing all invocations

in a single batch is shown as ‘N’, because the total number

of invocations depends on the workload. The standard

deviation is less than 1%. As can be seen in the left part of the

�gure, larger batch sizes lead to better performance. More

importantly, the right part of the �gure shows the average

(bars) and maximum (lines) accelerator execution times for

each ASM invocation. For example, using the MD workload

and a batch size of 16 shows acceptable performance, but

leads to a context switching latency of 48µs and the CPU is

woken up every 8µs on average. High wake-up frequencies

are a problem on modern cores, which can only achieve

signi�cant power savings in deep sleep states. However,

the deeper the sleep state, the longer the time to bring the

core back into a functional state (e.g., on Intel’s Haswell

generation, dozens of microseconds to leave C6 and up to

several milliseconds to leave C10 [32, 54]). Hence, deeper

sleep states are only bene�cial during longer idle periods.

M3
X performs all accelerator invocations in a single batch

and uses an ASM that is interruptible between invocations

to get the best of both worlds: On the one hand, a single

batch leads to the best performance. On the other hand,

the �ne-grained interruptibility allows to context-switch

to a more important activity with a low latency. Note that

an immediate interruption can be achieved by resetting

the accelerator logic, but requires to repeat the last step of

the computation. If all invocations are done by the ASM

in hardware (autonomous), the accelerator needs to repeat

only a single indivisible step. If all invocations are done in

software (assisted), the accelerator needs to repeat as many

steps as the performance and energy constraints allow.

7.6 Autonomous Stream Processing
Finally, we want to show the bene�ts of autonomous

stream-processing accelerators. Stream processing is used

in various domains such as mobile communication, image

processing, and audio processing. In this work, we consider

an image processing scenario as is imaginable in data centers,

similar to Google’s TPU [27] workloads. The cloud provider

o�ers a set of image-processing accelerators as a service and

allows customers to perform large-scale image processing

on these accelerators. An e�cient method for large images is

FFT convolution [42], which �rst performs a 2D fast Fourier

transform (FFT) on the input image, then multiplies the

result pointwise with an image �lter, and �nally performs

the inverse FFT. Depending on the �lter, FFT convolution can

be used, for example, for edge detection or low-pass �ltering.

To evaluate this scenario, we use three types of accelerators

called FFT, MUL, and IFFT. Each accelerator has 2 KiB (the

block size for the 32×32 point FFT) of local scratchpad mem-

ory (SPM) and uses the �le protocol (see § 5.8) to stream the

data block-wise from the input stream via the SPM to the out-

put stream. Due to the deterministic execution model of these

accelerators, we did not use gem5-Aladdin to simulate the ac-

celerator logic, but used Aladdin [55] to determine the compu-

tation times o�ine. To get reasonable results, we generated all

sensiblecon�gurationsandpickedthesweetspotbetweenper-

formanceandtheproductofchipareaandpowerconsumption.

We obtained 5,856 cycles for FFT and IFFT and 1,189 cycles for

MUL. To put these numbers into perspective, the FFT/IFFT

accelerator is about three times as fast as a simple software im-

plementation and Aladdin reports a three orders of magnitude

lower power consumption than a typical modern x86 core.

These three types of accelerators run activities that form

an FFT-MUL-IFFT chain to process a 4 MiB image �le and

store the resulting image as a �le. In our �rst experiment,

we run 1 to 4 such chains simultaneously without context

switching, thus using 1 to 4 instances of each accelerator type.

To show the bene�ts of autonomous accelerators, we compare

M3
X’s autonomous approach with the assisted approach. The

assisted approach drives the accelerators from software using

a single general-purpose core. Hence, software loads the input

data into the SPM, starts the accelerator via a message, and

asks the accelerator’s DTU to move the result from the SPM

to the next accelerator or to the output �le. The autonomous

variant connects the DTU endpoints of the accelerators

as follows: The input of the �rst and the output of the last

accelerator are connected to a �le. The output of the �rst and

second accelerator are directly pushed to the successor.

We simulate two ways to attach accelerators to the system:

network-on-chip and PCI Express (PCIe). The former leads to

superior performance due to lower latency, whereas the latter
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Figure 9: Total runtime, CPU time, and context switching

overhead for di�erent numbers of accelerator chains when

integrating the accelerators into the NoC.
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Figure 10: Like Fig. 9, but with PCIe-attached accelerators.

allows a �exible combination of independently developed

components. The result for the NoC version is depicted

in Fig. 9, whereas the PCIe version is depicted in Fig. 10.

We show the overall runtime (a) and the CPU time spent

to drive the accelerators (b), depending on the number of

accelerator chains using three runs, preceded by one warmup

run. The standard deviation is below 3%. We simulate the

PCIe-attached add-on card by connecting the accelerators via

a bridge with a delay of 500 ns to the host system, which is the

typical one-way latency for PCIe gen 3 [20,23,30,53]. In other

words, we do not simulate a complete PCIe interconnect,

but only the latency PCIe introduces. The one-way latency

within the NoC is about 10 ns. In both cases, the DRAM is

part of the host system and stores the in-memory �le system.

Using the assisted approach leads to slightly worse overall

runtime with an increasing number of accelerator chains

when integrating the accelerators into the NoC. With PCIe,

the overall runtime increases signi�cantly, leading to a

slowdown of factor 4.7. In contrast, the autonomous approach

always achieves the same runtime, independent of the number

of chains. More importantly, the assisted approach keeps the

CPU busymostof the time. Within the NoC,the CPU is utilized

100% of the time starting at four accelerator chains, whereas

with PCIe, the CPU is already fully utilized starting with two

chains. The autonomous approach does not cause signi�cant

CPU load in either case. Additionally, Fig. 10 shows that the

autonomous approach outperforms the assisted approach for

PCIe-based accelerators even if the assisted approach does

not fully utilize the CPU. The reason is the 500 ns delay when

communicating with the accelerators, which prevents the

assisted approach from fully utilizing the accelerators.

Finally, we evaluate the context switching overhead when

two chains of activities compete for the same accelerators. In

this case, we use only the autonomous approach and put each

chain of activities into the same gang to bene�t from gang

scheduling. Plot (c) in Fig. 9 and Fig. 10 shows the context

switching overhead by comparing the runtime of two activity

chains running consecutively with the runtime of two chains

running interleaved. We vary the time slice length for context

switching between 1ms and 4ms. As the results show, using

a still rather short time slice of 4ms leads to less than 0.9%

overhead with accelerators integrated into the NoC and less

than 2.9% overhead when attaching them via PCIe.

Note that the performance can still be improved for both

the assisted and the autonomous approach. For the assisted

approach, batching could be used to reduce the interaction

frequency with the accelerators. However, batching is only

possible by increasing the SPM sizes of the accelerators,

which is expensive in terms of area and energy and increases

the time the accelerator is not interruptible. Additionally,

the assisted approach can trade more CPU time for more

accelerator performance by using multiple cores to drive

the accelerators, until the PCIe bus becomes the bottleneck.

The autonomous approach does not su�er from the trade-o�

between SPM size and CPU utilization and can further

improve performance by overlapping data transfers to the

DRAM instead of issuing one transfer at a time.

8 Conclusion
In this work, we presented M3

X, which combines fast-path

communication, bypassing the kernel, with context switching

and thereby enables autonomous accelerators. To this end, we

re-evaluated the boundary between hardware and software.

We found that (1) introducing a hardware-friendly �le proto-

col enables accelerators to autonomously access �le systems

ornetworkstacks,(2)performingpotentiallycomplexschedul-

ing decisions in software and simple save and restore actions

in hardware allows to context switch accelerators, and (3) at-

taching a simple hardware component to the accelerator logic

allows to combine autonomous operation and interruptibility.

We demonstrated in our evaluation that M3
X retains the

performance advantages of M3’s fast-path communication,

while using the system’s resources more e�ciently by

performing context switches, if required. Additionally, we

have shown that running PCIe-attached image processing

accelerators autonomously achieves a speedup of 4.7 and

reduces the CPU utilization by a factor of 30.

In future work, we plan to study other types of accelerators

such as FPGAs and GPUs and apply our insights from

simulation to real hardware.
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