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ABSTRACT
Data center resource disaggregation promises cost savings by pool-
ing compute, storage and memory resources into separate, net-
worked nodes. The benefits of this model are clear, but a closer look
shows that its full performance and efficiency potential cannot be
easily realized. Existing systems use CPUs pervasively to interface ar-
bitrary devices with the network and to orchestrate communication
among them, reducing the benefits of disaggregation.

In this paper we presentCaladan, a novel system with a trusteduni-
versal resource fabric that interconnects all resources and efficiently
offloads the system and application control planes to SmartNICs,
freeing server CPUs to execute application logic. Caladan offers
three core services: capability-driven distributed name space, virtual
devices, and direct inter-device communications. These services
are implemented in a trusted meta-kernel that executes in per-node
SmartNICs. Low-level device drivers running on the commodity host
OS are used for setting up accelerators and I/O devices, and exposing
them to Caladan. Applications run in a distributed fashion across
CPUs and multiple accelerators, which in turn can directly perform
I/O, i.e., access files, other accelerators or host services. Our dis-
tributeddataflowruntimerunson topof this substrate. It orchestrates
the distributed execution, connecting disaggregated resources using
data transfers and inter-device communication, while eliminating
the performance bottlenecks of the traditional CPU-centric design.

1 INTRODUCTION
Operators are moving towards a data center model where compute,
storage and memory resources are disaggregated in order to improve
TCO [5, 10, 11, 13, 16, 18, 20, 21, 23, 24, 27, 29]. The primary bene-
fits stem from pooling resources onto separate nodes, which allows
more flexible allocation and sharing of hardware, thereby leading
to improved utilization and reduced hardware redundancy.

While at the high-level the cost benefits of the disaggregated re-
source model are clear, current software stacks do not allow realizing
the model’s full performance and efficiency potential. For example,
consider a network service that performs image classification using
a machine learning model. Its high-level organization is shown in
Figure 1. The application runs as a regular CPU process (App). For
each classification request, it sends out a read request to the file
system ( 1 and 2 ; running in FS and SSD) to read the appropriate
model from a file (if it has not been cached already); e.g., to classify
types of cats or dogs it reads a cat or a dog model respectively. The
SSD then sends the file contents into a custom machine learning
accelerator to load the model ( 3 ; in MLAccel), computes the result
and sends it back to the application ( 4 ; in App).

We make three primary observations about an idealized disaggre-
gated system. First, achieving high performance in such an appli-
cation requires direct data and control path between the SSD and

Figure 1: Example machine learning service with a main
user application (App) processing external requests, a file
system service (FS and SSD), and a machine learning accel-
erator (MLAccel). The numbered arrows (used in the text)
correspond to networkmessages across resources in the data
center.

MLAccel resources that does not involve App. Second, the MLAccel
resource runs on a hardware accelerator; the model inference thus
does not require any CPU computations. Third, the whole system
operates in a form of a dataflow where resources are invoked in a
pipeline by their predecessors in the flow graph. While App lever-
ages the same logical execution path for each request, it may invoke
different hardware resources each time, allocated on-demand by the
system to meet the load.

Unfortunately, the idealized design of Figure 1 is not what existing
systems software supports. First, withMLAccel, FS and SSD all located
in different nodes, each node deploys its own CPUs to execute device
access logic, provisioned to enable efficient control of the devices and
scalable RPC interfaces for applications. Second, current software
stacks would force centralized management of all the resources (FS,
SSD and MLAccel) from the application’s CPU (App). This 1-to-all
control and data path topology would involve more network trans-
fers to run the model inference task compared to the peer-to-peer
topology in Figure 1. These two factors imply that a practical disag-
gregated system will quickly lose its performance and TCO benefits;
centralized resource management requires an increased number of
network messages, and device access logic requires additional CPUs
to execute the system’s and application’s control plane, instead of
using them to execute critical application business logic.

The crux of the problem is the inherently CPU-centric model of
existing systems; CPUs play a central role in managing devices and
in orchestrating operations across them. This is because only CPUs
knowadevice’swireprotocol (i.e., howtooperate itsbare-metal inter-
faces). Instead, peer-to-peer interactions assume that every device in
the system will know the protocol of every other device, which seems
unrealistic. For example, we cannot expect every SSD vendor to im-
plement the logic to push requests into our custom MLAccel device.

Ideally, we would expose all disaggregated resources through the
network by co-locating networked device access logic with every
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resource. This would allow efficient implementations of a wealth
of use-cases like secure direct device assignment of disaggregated
resources (e.g., directly accessing file contents in SSD from App), ap-
plication and device RPC interfaces, or even distributed dataflow exe-
cution models [30] like the one shown in Figure 1. In fact, distributed
dataflow is increasingly used in data center-scale programming
frameworks [2, 3, 12, 32], making its optimized execution particu-
larly useful in a disaggregated setting.

In this paper we describeCaladan, a data center-scaledistributed
meta-OS that eliminates the limitations of existing CPU-centric de-
vices using a novel universal resource fabric. Caladan’s fabric
interconnects all resources in the system, and exposes generic de-
vice access logic through a small set of abstract resource access and
messaging primitives. Importantly, it regains the lost benefits of the
disaggregated resource model without the need for additional CPUs
nor changes in the devices it interconnects.

Caldan’s meta-OS takes the role of securelymanaging access to and
communication among resources anywhere in the data center, while
its users can take advantage of existing OSes and software stacks to
deploy their application logic and device-specific drivers. The fabric
is provided as a trusted component that executes in per-node Smart-
NICs [22], to which device access logic is offloaded. All resources
are globally addressed, routing operations to them regardless of their
physical location and resource type. Since multiple tenants can share
the same data center, the fabric also has strong security guarantees
through the use of object capabilities [9], which can be seen as pro-
tected resource handles (akin to file descriptors in POSIX systems).

Caladan follows well-known 𝜇kernel principles and offers three
basic objects that form its universal resource fabric: memory, de-
vice slices and device requests. Device slices are a virtual instance
of a resource, like a CPU process, a portion of an SSD disk that
an application can directly access, or even a virtual function of a
PCIe-attached device [26]. Device requests are the only messaging
primitive in Caladan, and contain immediate values (e.g., used to
represent a device-specific request) and references to other resources
or requests using capabilities.

The contributions of this paper are a description of the security
aspects and functional design of the Caladan meta-OS (§ 2), and a
discussion of three key features that make it possible: (1) the appli-
cation of 𝜇kernel principles to minimize trust and allow complex,
higher-level models (§ 3), (2) the design of untrusted device drivers to
adapt Caldan’s universal resource fabric primitives to device-specific
operations (§ 4), and (3) the capability management operations that
make Caladan efficient (§ 5).

2 THECALADANMETA-OS
Caladan provides a universal resource fabric that interconnects
all resources in the data center. This fabric is designed to offload
critical device access logic, accelerating access to and communica-
tion among physical devices and software services alike regardless
of their physical location. The fabric can thus accelerate the sys-
tem’s and application’s control plane, eliminating the limitations of
existing CPU-centric technology.

Caladan is a distributed meta-OS; it allows the coexistence of
both existing, full-stack systems like Linux as well as new or exper-
imental bare-metal devices directly used by applications, and the

Figure 2: Placement of the hardware and software compo-
nents of the application inFigure 1; slices correspond to logic
components, and numbers to the messages used by them
in Figure 1. Dark gray components are part of Caladan’s
meta-kernel, trusted by the data center operator. Light gray
components are higher-level services and interfaces trusted
by the application only if used.

critical path operations of its universal resource fabric are offloaded
into per-node SmartNICs [22].

Caladan follows well-known 𝜇kernel principles in its design.
The data center operator must trust the Caladan meta-kernel, Cal-
adan’s trusted computing base (TCB), which implements the basic re-
source abstraction and messaging primitives of Caladan’s universal
resource fabric. Higher-level components like device drivers, system
services (e.g., management of resource placement and scheduling),
and even constructs for complex execution models like dataflow
reside outside of the meta-kernel. § 3 further develops the reason-
ing and affordances behind these principles, while § 4 contains a
description of physical device drivers in Caladan.

Caladan’s universal resource fabric abstracts all resources as ob-
jects. Caladan’s primitives must be secure, since multiple tenants
must co-exist in the data center. The meta-kernel provides a sound
security model through the use of capabilities [9], unforgeable to-
kens managed by the meta-kernel that are the sole mechanism to
identify and authorize the use of objects in Caladan. Internally, the
meta-kernel accesses objects through a global addressing scheme,
which is used to route operations to objects (including messages)
regardless of their physical location and resource type.

Caladan’s capabilities act as protected object reference handles
that can be communicated through Caladan’s messages. This oper-
ation is known as capability delegation in the literature, making the
meta-kernel a distributed object-capability system [14, 31]. Since
delegation is expected to be used frequently, the meta-kernel makes
some explicit trade-offs in capability management that aim at opti-
mizing this operation, further discussed in § 5.

The rest of this section describes the basic objects and messaging
primitives of the Caladan meta-kernel, using Figures 2 and 3 to de-
scribe the physical component placement and application program-
ming API for the example in Figure 1. Note that Caladan provides
a minimal, trusted meta-kernel API, whereas third-party user-level
libraries and services are used to implement higher-level APIs like
the one used in Figure 3.
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1 / / i n i t i a l i z a t i o n
2 auto c t x = c a l a d a n : : c o n t e x t : : f a c t o r y ( ) ;
3 auto s _ f s = f i l e s y s t e m : : f a c t o r y ( c t x ) ;
4 auto s_mgr = resource_manager : : f a c t o r y ( c t x ) ;
5 auto s_ml = m l a c c e l : : f a c t o r y ( s_mgr ) ;
6 auto ml_buf = s_ml−> c r e a t e _ b u f f e r ( ) ;
7 / / r e ad f i l e and t r a i n wi th i t
8 ctx −> s t a r t ( )
9 −>then ( s _ f s −> read ( " / pa th / t o / f i l e " , ml_buf ) ) ,

10 −> o n _ e r r o r ( [ ] ( ) {
11 throw s t d : : e x c e p t i o n ( " e r r o r ␣ r e a d i n g " ) ;
12 } )
13 −>then ( s_ml−> c l a s s i f y ( ml_buf , . . . ) )
14 −>wai t ( ) ;

Figure 3: Example implementation of the application in
Figure 1 using Caladan’s runtime API.

2.1 Resource Abstraction: Memory and Slices
The Caladan meta-kernel has two objects to represent resources:
memory and device slices. Like all objects in Caladan, these can be
communicated in messages using capabilities.

Memory objects represent memory anywhere in the data center,
encoded as the physical location or a memory block, its size, and
access permissions. The meta-kernel offers three operations: (1) cre-
ate a new memory object from a local memory buffer; (2) create
an object with diminished permissions and buffer extents (e.g., get
a read-only object from a read-write one, or get one pointing to a
memory sub-region by increasing its start address or decreasing its
size); and (3) copying data across two memory objects.

Devicesliceobjects (or slices, for short) representanynon-memory
resource, regardless of where it is physically located and whether it
is a physical device or a service implemented by software. Slices are
akin to processes in a traditional OS; every slice can receive Caladan
messages (see § 2.2 below) and has its own capability namespace1

that it can use to operate memory objects and send messages to
other slices. Slices thus provide a homogeneous representation of
wildly different resources such as CPU processes (e.g., 𝑆𝑙𝑖𝑐𝑒𝐴𝑝𝑝 or
𝑆𝑙𝑖𝑐𝑒𝐹𝑆 in Figure 2), an execution context in a GPU (similar to the
process abstraction), a portion of an SSD disk that applications can
directly access (e.g., 𝑆𝑙𝑖𝑐𝑒𝑆𝑆𝐷𝐴𝑑𝑝 ), or even a virtual function of a
PCIe-attached device [26] (e.g., 𝑆𝑙𝑖𝑐𝑒𝑀𝐿𝐴𝑑𝑝 ).

Figure 3 shows how to implement a simple dataflow version of
the application in Figure 1 using Caladan’s high-level runtime API.
1) Bootstrap: The main application is itself a slice running on a

CPU, 𝑆𝑙𝑖𝑐𝑒𝐴𝑝𝑝 in Figure 2, and will first create a communication
channel to Caladan’s meta-kernel, associating all meta-kernel opera-
tions to this slice’s capability namespace (ctx object in Line 2). Note
that the following operations (outside the caladan namespace) are
implemented outside of Caladan’s TCB.
2) File system service: In Line 3, the application gets access to the

third-party file system service. This service is itself a Caladan ap-
plication with its own internal resources (𝑆𝑙𝑖𝑐𝑒𝐹𝑆 , 𝑆𝑙𝑖𝑐𝑒𝑆𝑆𝐷𝑆𝑣𝑐 , and
𝑆𝑙𝑖𝑐𝑒𝑆𝑆𝐷𝐴𝑑𝑝 , where the latter is the critical-path device access logic
serving SSD read requests). In this case, filesystem::factory uses
ctx to request access to a slice object that the file system service has

1Also known as a C-list in the literature.

registered in advance (𝑆𝑙𝑖𝑐𝑒𝐹𝑆 ). When 𝑆𝑙𝑖𝑐𝑒𝐴𝑝𝑝 sends a message to
𝑆𝑙𝑖𝑐𝑒𝐹𝑆 ( 1 in Figure 1), it triggers the service’s internal dataflow; fin-
ishing the SSD read request in 𝑆𝑙𝑖𝑐𝑒𝑆𝑆𝐷𝐴𝑑𝑝 ( 2 ) will trigger the con-
tinuation of the application’s own dataflow ( 3 ). Note that the global
addressing of Caladan’s unified resource fabric allows co-locating the
main application (𝑆𝑙𝑖𝑐𝑒𝐴𝑝𝑝 ) and the file system’s core logic (𝑆𝑙𝑖𝑐𝑒𝐹𝑆 )
in CPUs of the same physical node without neither being aware of it.
3) Resource management service: Similarly, Line 4 gets access to

a pre-registered slice that implements a third-party, global resource
management service (not shown in Figures 1 and 2). The application
then requests a new MLAccel slice to the resource manager, Line 5,
who responds with the resulting slice objects after applying its phys-
ical placement policy. Note that device drivers are usually built from
more than one slice object to accommodate separate control and data
paths, like 𝑆𝑙𝑖𝑐𝑒𝑀𝐿𝑆𝑣𝑐 and 𝑆𝑙𝑖𝑐𝑒𝑀𝐿𝐴𝑑𝑝 for the MLAccel resource in
Figure 2 (more detailed information is provided in § 4).

4)Device-specific resourcemanagement:The application then sends
a request to the device driver in Line 6 to create a memory buffer in
MLAccel, which returns it as a memory object (𝑀𝑒𝑚𝑀𝐿𝐵𝑢𝑓 ).
5) Dataflow computation: Once the application has initialized all

resources it needs, it can build a dataflow graph with messages and
start a computation based on it (Line 8), which is explained next.

2.2 Messaging: Device Requests
The Caladan meta-kernel provides device request objects (or re-
quests, for short) to send messages across slices. Each request has
three elements: (1) a target slice, (2) a raw data buffer to send, and (3)
a list of capability arguments to install in the target slice’s capability
namespace (e.g., to pass memory object references like we would do
with pointers). Caladan has a single messaging primitive that sends
the data buffer and capability arguments contained in a request to
the target slice specified in it.

Requests act as immutable, opaque continuations [28] that can
be efficiently used to build secure direct resource access primitives.
Applications can create new requests from either a slice or from an
existing request. Request contents can be partially set when creating
a new request, as long as the newly set contents had not been already
set in the originating request; i.e., applications can set a subset of the
raw data buffer (offset, size and value), as well as specific capability
argument indices. For example, we could implement a FS service
that gives applications direct, read-only access to specific blocks
in the SSD device. The FS would simply create a new request for
𝑆𝑙𝑖𝑐𝑒𝑆𝑆𝐷𝐴𝑑𝑝 and set the read command, block number and size on
the raw data buffer, and pass that request to the application. The
application can later directly access the SSD device by simply setting
a capability argument for the output memory object, without further
interaction with the FS service.

Caladan’s meta-kernel API has a single one-way asynchronous
messaging primitive that simply sends the raw data buffer and the
list of capability arguments. Nevertheless, more complex messaging
models can be built as a convention on how to use request contents.

Requests can themselves be communicated through the list of ca-
pability arguments of a request (they are Caladan objects). Caladan’s
untrusted runtimeAPI takesadvantageof this fact tobuilda simpler,
higher-level interface that implements a continuation passing style
(CPS) model [28], which is the one shown in Figure 3. By convention,



Lluís Vilanova, LinaMaudlej, Matthias Hille, Nils Asmussen, Michael Roitzsch, andMark Silberstein

Figure 4: Layers, components and APIs in the Caladan
meta-OS. Dark gray components are part of Caladan’s meta-
kernel, and trusted by the data center operator (the focus of
this paper). Light gray components are higher-level services
and interfaces trusted by the application only if used.

the runtime API uses the first two capability arguments to pass re-
quest objects that act as success and error continuations, respectively.

For example, the application builds a request in Line 9 that tells
thefilesystemtoread theselectedfile intoamemoryobject (𝑀𝑒𝑚𝑀𝐿𝐵𝑢𝑓 ).
The specific formatting of the request is established by the client-
side service library (method s_fs->read), but lines Lines 10 and 13
instruct the runtime API to set the success and error continuations
to a request to MLAccel and one to the specified application’s error
handling routine, respectively. When 𝑆𝑙𝑖𝑐𝑒𝐹𝑆 receives this request
in 1 , it will get these two continuations as capability arguments. If
the file does not exist, 𝑆𝑙𝑖𝑐𝑒𝐹𝑆 will use the error continuation. If the
file exists, it will send a message to the corresponding slice for SSD
with the requesting application’s continuations, such that SSD will
transparently compose its success/error state with the application.

Note that with the CPS model of Caladan’s untrusted runtime API,
we can build a more complex dataflowAPI on top. We can do so by
deploying a dataflow engine service that can be composed, through
continuations, with the application’s dataflow graph to provide more
complex dataflow-specific semantics.

3 𝜇KERNEL PRINCIPLES
We designed Caladan around three 𝜇kernel principles: we make an
effort to keep the TCB small, we implement high-level communica-
tion protocols on top of low-complexity primitives, and we factor
out infrastructure components into services.

Figure 4 shows the various layers, components, and API stack
in the Caladan meta-OS. We first discuss the Caladan meta-kernel,
which defines the TCB for isolation, shown in dark gray in the figure.
We then describe how higher-level layers implement communication
protocols and infrastructure components on top of the meta-kernel

interface, shown in light gray. These services need to be relied upon
by applications for availability, but not for isolation.

3.1 The CaladanMeta-Kernel
The Caladan meta-kernel provides a universal resource fabric, a
low-level layer dedicated to provide uniform addressing and isolation
support for heterogeneous resources. Whereas 𝜇kernels implement
isolation using a privileged CPU mode, Caladan should support stor-
age and compute devices without native isolation features. But for
maintainability reasons we also want a homogeneous implementa-
tion of isolation that is device-agnostic.

Our solution — inspired by the M3 microkernel for heterogeneous
manycores [6] — is to place a hardware gatekeeper in front of every
resource. We connect every device in the data center to Caladan’s
universal resource fabric via a SmartNIC, placing it in a privileged
position to control communication. Each SmartNIC runs an instance
of the Caladan meta-kernel, which maintains a distributed capability
system [14]. Therefore, the meta-kernel code and the SmartNIC it
runs on constitute the entire TCB with regard to isolation of resource
accesses.

3.2 Kernel Responsibilities
Caladan uses capabilities to interact with the meta-kernel, which
supports operations for sending messages and for memory accesses
(implemented through remote direct memory access — RDMA). Mes-
sages, or device requests, realize the control plane and are sent by
pushing them to an associated remote device slice. Remote mem-
ory accesses via RDMA implement the data plane. Consequently,
the three major capability types are device slice capabilities, device
request capabilities, and memory capabilities. Some additional capa-
bility types needed for setup and capability revocation are explained
later in §§ 4 and 5.

As in any capability system, authority is managed in a white-list
fashion: a capability is needed to invoke the respective operation on
it. Since the SmartNIC is located in a privileged position to oversee
all traffic to and from devices, the kernel can ensure that any commu-
nication not explicitly allowed by a capability is denied. Traditional
data center security mechanisms like VLANs and network ACLs can
be augmented or completely replaced by a capability system [7]. At
the same time a node’s IOMMU [1, 4, 15, 17] can be used to ensure
devices on the same node can only interact through the meta-kernel.

This capability-based design thus enables a small isolation TCB
with a tight set of responsibilities, but its features are aligned with
our goals of a device-agnostic, high-performance infrastructure.

3.3 High-Level Interface
The meta-kernel provides one-way asynchronous message passing,
a fitting communication primitive for a low-complexity TCB, but
inconvenient to use. We implement the CPS model discussed earlier
(§ 2) on top of the kernel primitives, but outside of the isolation
TCB. From the meta-kernel’s perspective, the CPS model is just a
convention that applications have agreed upon. Even if an applica-
tion violates these conventions and somehow sends a malformed
continuation, the isolation properties enforced by the meta-kernel
would still hold. These higher-level components must thus be trusted



Caladan: A DistributedMeta-OS for Data Center Disaggregation

by applications with regard to availability of services, but have no
impact whatsoever on isolation between data center clients.

3.4 Remote Services
While high-level messaging primitives are implemented as compo-
nents outside the meta-kernel, but on the same machine, we imple-
ment other infrastructure functionality as remote services reachable
through messages. Resource allocation (resource placement com-
ponent in Figure 4) becomes a service that applications call when
they require more resources. The service replies with device request
capabilities to additional device slices and bills the client accord-
ingly. Capabilities to this and other services can be obtained from
the global capability namespace service, a simple key-value store
mapping strings to capabilities2.

Sending requests to device slices is akin to invoking a method on
an object. The functionality behind these objects can be implemented
by hardware accelerators or by software running on a device, but
this detail does not change the way services are invoked. Device
drivers are, in fact, services that translate messages from one format
to another. Device slices thus represent the endpoints to talk to any
kind of service in Caladan. Requests constitute a generic invocation
of such a service. Together, they implement mechanisms similar to
processes and inter-process communication in a 𝜇kernel, abstracting
services of all kinds behind a common interface.

4 DEVICEDRIVER SUPPORT
Physical devices can be attached into Caladan’s universal resource
fabric through a device driver component that acts as any other
Caladan-capable application. As explained, regular Caladan appli-
cations can use the raw data buffer and capability arguments of a de-
vice request arbitrarily. To bridge the gap between Caladan’s device
requests, the conventions under which they are used, and device-
specific protocols, device drivers are split into three components: an
application-side driver library, a device service, and a device adaptor.

A driver library is a regular third-party library that applications
can link with to avoid dealing with the low-level details of each
device’s request formats and Caladan’s low-level primitives. Each
of the services in Figure 3 is accessed through such driver libraries
(e.g., Lines 3 to 5 and all the methods called on these objects).

Adevice service is a regular, Caladan-aware, CPU application that
initializes the physical device (or devices) it manages. Figure 2 shows
two device services, 𝑆𝑙𝑖𝑐𝑒𝑆𝑆𝐷𝑆𝑣𝑐 and 𝑆𝑙𝑖𝑐𝑒𝑀𝐿𝑆𝑣𝑐 , which execute in
a CPU co-located with the physical device they manage (SSD and
MLAccel, respectively). After initialization, the service will create
a series of request objects for each of the operations it exports to its
client applications, including slice creation for the corresponding
physical device. In the case of Caladan’s runtime API, the service will
register a slice creation request with the resource placement service,
together with the type and properties of the device it is serving. When
a client application requests a new slice for a specific device, Line 5
in Figure 3, the resource placement service will invoke the registered
device service request. In turn, the device service will create a new
device slice object, perform the necessary device-specific operations
for the new slice (e.g., create new request/response queue pairs to

2Long random strings as keys are a common technique used to provide security in this
type of services, typically referred to as password capabilities.

the device), and return a series of request objects to the client, repre-
senting the operations the client can invoke for the new device slice.

A device adaptor implements the accelerated data path opera-
tions for a slice of a physical device. Note that device services alone
are sufficient to incorporate a physical device into Caladan’s univer-
sal resource fabric; the service can demultiplex all per-slice requests
and adapt them to the device-specific protocol. Nevertheless, this
puts inefficient CPUs on the critical path and reduces the benefits of
disaggregation. To solve this problem, when a device service creates a
device slice, it can associate it with a device adaptor that will execute
inside the SmartNIC and process all requests directed to that slice.
For example, when the 𝑆𝑙𝑖𝑐𝑒𝑆𝑆𝐷𝐴𝑑𝑝 receives a disk read request,
it will: (1) verify that it has received a capability argument for an
output buffer to place the read data in; (2) create a local temporary
buffer for the read contents; (3) create a device-specific SSD read
request, pointing to the temporary buffer; (4) poll the SSD queues
for a read response; (5) copy the the contents of the temporary buffer
onto the previous output memory capability; and (6) invoke the suc-
cess continuation of the processed device request. The device driver
implementer has complete freedom on how to handle each request,
since both the device service and adaptor are slices themselves that
can communicate via Caladan.

In the current prototype, a device adaptor is a shared library that
the service loads into the meta-kernel running on the SmartNIC,
and is directly triggered when the associated slice receives a request.
Even if device drivers are outside Caladan’s TCB, the operator must
trust the device adaptors (Caladan controls which applications are
authorized to load adaptors). One could envision more sophisti-
cated mechanisms to isolate adaptors using protected libraries in
the meta-kernel [25], or trusted, hardware-accelerated intermediate
code representations like eBPF [19].

5 CAPABILITYMANAGEMENT
Caladan uses distributed object capabilities for fine-grained autho-
rization. As mentioned in § 2, device slices can delegate (i.e., send to a
receiver) and obtain capabilities via requests. Delegation has thus to
be highly efficient, since it is on the critical path of request processing,
ahigh-frequencyoperation inCaladan.Caladanmustalso support ca-
pability revocation; before a device slice object can be destroyed, Cal-
adan must ensure there are no capabilities referencing it anywhere in
the data center. This means delegated capabilities need to be tracked
to support later revocation, a costly operation when performed on
every delegation. Hence, the fundamental design principle for Cal-
adan’s capability system is to provide fast delegation at the expense
of potentially sacrificing the speed and granularity of revocation.

Caladan ensures capabilities are unforgeable by employing par-
titioned capabilities where the meta-kernel acts as the privileged
component; all capability operations are initiated by applications,
but are executed by the meta-kernel running on the SmartNICs.

5.1 Distributed Capabilities
Caladan’s universal resource fabric connects various nodes in the
data center; capabilities are thus distributed across nodes and each
node maintains its own local set of capabilities, similar to other
distributed capability systems [14, 31].
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Revocation in Caladan’s distributed capability system requires re-
cursively tracking the delegation of capabilities across device slices,
which are the smallest subject for isolation (as opposed to appli-
cations, which can encompass multiple nodes in Caladan’s target
disaggregated architecture).

5.2 Fast Delegation
To achieve fast delegation in a distributed system we need to con-
sider what happens during delegation. There are two essential steps:
(1) the capability is copied from one node to another, and (2) the
delegation is recorded in a capability derivation tree that tracks the
delegation origin of every capability in the system. The purpose of
the first step is to achieve sharing of access rights between slices
(within and across nodes). The second operation is done to enable the
revocation of the capabilities later on. While the cost of capability
copies is determined by implementation details like the size of a
capability and the overhead to serialize and send it over the wire,
the cost of tracking capability delegation depends on the chosen
strategy for tracking and revoking capabilities.

A capability derivation tree can become a large data structure, sub-
ject to frequent modification during capability delegation and revoca-
tion operations. This is because delegation is tracked for each capabil-
ity to enable fine-granular selective revocation [8]. Our hypothesis is
that revocation does not always require the fine granularity of selec-
tive capability revocation, since revocation is often used to clean-up
state after application termination or after cancelling connection to
an entire service, which involves revoking multiple capabilities in
one go. Therefore, we choose to trade-off granularity for performance.

5.3 Revocation Domains
Caladanassignscapabilities intobucketscalledrevocationdomains,
which offer a novel approach for efficient capability revocation at
a coarse granularity. Revocation domains are objects in Caladan’s
meta-kernel, and delineate the scope of a revocation operation, mean-
ing that all capabilities of one revocation domain are collectively
revoked. Hence, Caladan allows creating new revocation domains
and assigning capabilities to them. Revocation granularity is thus de-
fined by a revocation domain; revocation is invoked on a revocation
domain and not on the capabilities which are going to be revoked.3

Revocation domains are designed around three basic rules:
(1) Each capability is part of at least one revocation domain.
(2) Each device slice has at least one revocation domain.
(3) A capability can be in multiple revocation domains.

A capability that is part of multiple revocation domains is revoked
whenever one of its domains is revoked. This enables revocation of
shared resources either when one application terminates or when
a revocation domain, created for sharing certain capabilities, is ex-
plicitly revoked. For example, imagine a file system service that
delegates capabilities to directly access a storage device. The service
will create one revocation domain per client application, and will
assign the delegated capabilities to the appropriate domain. When
the service wants to revoke access for a specific client application,
it will simply revoke the appropriate revocation domain.

Revocation domains are designed to avoid expensive tracking
of capability delegations. Without revocation domains (such as in
3Strictly speaking, the capability pointing to a revocation domain is invoked.

SemperOS [14]), each delegation needs to create a link between the
existing capability at the sender side and the new capability at the
receiver side. This tracking requires coordination between the two
involved nodes, leading to additional messaging for every delegation.
Revocation domains avoid this coordination by only keeping a record
of the revocation domains assigned to every delegated capability
and the target nodes of that delegation operation. A delegation of
a second capability on the same revocation domain will thus not
need to update this record. When a revocation domain is revoked,
only the nodes to which capabilities from this revocation domain
have been delegated are informed. This technique thus prevents
expensive broadcast operations and frequent updates to the data
structure tracking capability delegations.

Note that in this scheme, applications can control the granularity
of revocations by creating new revocation domains, including the
use of one revocation domain per capability for the finest possible
granularity when needed. However, we believe that applications
will primarily revoke capabilities in a coarse-grained fashion when,
for example, disconnecting from a service or shutting down.

In summary, the concept of revocation domains has sufficient
flexibility to implement fine-grained selective revocation, but also
offers a lot of optimization potential due to the reduced tracking over-
head, thereby enabling fast delegation in Caladan’s target distributed
setting.

6 CONCLUSIONS
Data center resource disaggregation promises large TCO improve-
ments, but existing systems preclude some of these benefits due to
their inherently CPU-centric model. As a result, existing systems
are bound to using multiple CPUs in the critical path of applications
to interface every compute and storage device with the network, as
well as need to centrally orchestrate communication across devices.
These two factors diminish the performance and TCO benefits of an
ideal disaggregated resource data center.

In this paper we present Caladan, a system that provides a univer-
sal resource fabric that uniformly interconnects all resources in the
data center, regardless of their hardware and software nature. Cal-
adan’s fabric offloads the system’s and application’s control plane,
freeing up resources for critical application business logic.

Caladan’s universal resource fabric offers direct access to both soft-
ware services and hardware devices without CPU mediation through
a trusted meta-kernel that executes in SmartNICs deployed on each
node. The meta-kernel is in charge of providing low-level secure
primitives to access resources, enforcing isolation across tenants. It
also follows well-known 𝜇kernel principles to provide higher-level
features such as device drivers, resource management, third-party
services, or even dataflow execution models outside of the trusted
computing base, and allows applications and device drivers to use
existing system stacks.

The design of the Caladan meta-kernel presented in this paper
offers a glimpse at the basic tenets of Caladan: its core abstractions
and primitives and the trade-offs that have been taken to deal with
system security, efficiency and complexity. We believe these ideas
will serve to spur productive discussions in establishing a solid foun-
dation for future disaggregated data center designs, knowing that
this is a long road that will require large concerted efforts.
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